Электронное "конденсаторное" зажигание, CDI (Capacitor Discharge Ignition) "TAVSAR Company". Универсальное конденсаторно-тиристорное CDI электронное зажигание, оптимизированное по импульсной и пиковой мощности искрового разряда 6 ти вольтовое тиристорное

По принципу действия эта система относится к устройствам, в которых энергия, расходуемая на искро-образование, накапливается (в отличие от батарейной и транзисторной систем) не в магнитном поле катушки зажигания, а в электрическом поле специального накопительного конденсатора, который с помощью коммутирующего элемента (тиристора) в определенные моменты подключается к ней.

Рис. 1. Принципиальная электрическая схема конденсаторной (ти-ристорнои) системы зажигания

Принципиальная электрическая схема конденсатор-нон (тиристорной) системы зажигания с непрерывным накоплением энергии (рис. 33) в принципе мало чем отличается от схемы, впервые опубликованной в одном из американских журналов, а также в отечественных изданиях. Основное ее отличие состоит в более тщательном подборе элементов, что значительно повышает эксплуатационную надежность и уменьшает габариты устройства.
В частности, в схеме применены менее мощные транзисторы (П216), изменены номиналы резисторов в их базовых цепях, уменьшены габариты трансформатора, в выпрямителе использованы диоды с обратным напряжением 600 В, применен один мощный тиристор (вместо двух) на большее рабочее напряжение, введены переключатели Bl, B2.
Все это позволило разработать более компактную конструкцию, которая находилась в опытной эксплуатации на автомобиле в течение ряда лет. Схема сохраняет работоспособность при колебаниях питающего напряжения в пределах 9-15 В.
Ее можно использовать на любом автомобиле с напряжением питания электрооборудования +12 В. По сравнению со стандартной системой зажигания она не требует никаких дополнительных приборов, кроме электронного блока.
Схема может работать с катушками зажигания типа Б1, Б7, Б7А, Б13, Б21, Б21А, Б117 (автомобиль "Жигули": ВАЗ-2101, 2102, 2103, 21011). Рабочий диапазон температур от -40 до +65° С. Система зажигания состоит из электронного блока ЭБ, катушки зажигания КЗ с вариатором (или без него), контактов прерывателя Пр.
Основой системы является электронный блок, преобразующий сигналы прерывателя в импульсы высокого напряжения с амплитудой 400 В, которые затем поступают на обычную катушку зажигания, повышающую выходное напряжение до 25-30 кВ.
Электронный блок состоит из преобразователя напряжения на транзисторах 77, Т2 и трансформаторе Тр1; высоковольтного выпрямителя на диодах Д1-Д4;
накопительного конденсатора С2; бесконтактного ти-ристорного коммутатора Д6; схемы управления тири-стором Д6, выполненной на конденсаторе СЗ, диодах Д7-Д9 и резисторах R5, R7-R9; двух переключателей Bl и B2, предназначенных для быстрого перехода в случае необходимости с электронного зажигания (положение 1) на обычное батарейное (положение 2) и наоборот.
Преобразователь напряжения выполнен по схеме симметричного мультивибратора с индуктивной связью на мощных германиевых транзисторах 77, Т2 с нагрузкой в цепи эмиттера, в качестве которой используется первичная обмотка трансформатора Тр1. Несмотря на то что транзисторы 77, Т2 работают в ключевом режиме (режиме насыщения), на них выделяется значительная мощность в моменты переключения из проводящего состояния в непроводящее и наоборот.
Коллекторные цепи транзисторов Т1, Т2 можно соединить с корпусом прибора. Это позволяет крепить транзисторы непосредственно без изоляционной прокладки на корпусе электронного блока, используя последний в качестве радиатора.
Транзисторы 77, Т2 рассчитаны на кратковременные (около 1 мс) четырехкратные перегрузки по току, возникающие в каждом цикле искрообразования при срыве генерации преобразователя в моменты включения тиристора Д6. Резисторы Rl, R2 служат для подачи начального смещения, а резисторы R3, R4 ограничивают ток базы соответствующего транзистора.
трансформатор Тр1 рассчитан так, что коллекторный ток транзисторов 77, Т2 вызывает насыщение его сердечника. Это явление улучшает КПД преобразователя, а также способствует повышению устойчивости его работы в различных условиях эксплуатации авто мобпля. Частота генерации преобразователя - 800 Гц
Выпрямитель преобразователя выполнен по мостовой схеме на силовых диодах Д237В, получает питание от вторичной обмотки Тр1 и рассчитан на максимальное выходное напряжение 500 В. Он работает на нагрузку, состоящую из накопительного конденсатора С2 с малыми токами утечки и резистора R6, предназначенного для разряда конденсатора С2 при выключении питания электронного блока.
Энергия, накопленная в конденсаторе С2, передается в первичную обмотку катушки зажигания при включении тиристора Д6, выполняющего функцию электронного коммутатора. Момент включения тиристора Д6 определяется моментом размыкания контактов прерывателя.
При замкнутых контактах прерывателя тиристор Д6 надежно закрыт отрицательным смещением - 0,7В, образующимся при протекании тока в прямом направлении через диод Д7. Резистор R5 ограничивает величину тока через диод Д7 и "привязывает" управляющий электрод тиристора к нулевому потенциалу. Накопительный конденсатор С2 заряжен в этот момент от выпрямителя до высокого потенциала UВ (см. табл. 4), который зависит от напряжения питающей сети автомобиля.

Когда контакты прерывателя замкнуты, через них протекает ток, определяемый прямым сопротивлением диода Д5 и величиной резисторов R9, RIO. В нашем случае ток равен примерно 150 мА, а конденсатор СЗ через диод Д7 и резистор R7 заряжен практически до напряжения +12 В источника питания *.
Как только контакты прерывателя разомкнутся, напряжение, до которого заряжен конденсатор СЗ, прикладывается (в положительной полярности) через диод Д8 и резисторы R9. RIO к управляющему электроду тн-ристора Д6". Тиристор открывается, и конденсатор С2 разряжается на первичную обмотку катушки зажигания, что сопровождается возникновением высоковольтного импульса U2макс во вторичной обмотке.
Цепь R8Д9 пропускает отрицательный импульс от первичной обмотки катушки зажигания, который полностью перезаряжает конденсатор СЗ в противоположной полярности, как только открывается тиристор Д6. Этим мгновенно снимается положительное смещение с управляющего электрода тиристора Д6 и исключается возможность многократного переключения последнего, когда контакты прерывателя еще разомкнуты.
Таким образом, благодаря цепочке Р8Д9 положительное напряжение на управляющий электрод тиристора Д6 подается в виде короткого импульса длительностью около 2-3 мкс, что обеспечивает образование лишь одной искры в момент размыкания контактов. Диод Д5 и конденсатор С/ образуют развязывающий фильтр низкой частоты, предотвращающий проникновение помех в цепь питания.

*Постоянная времени заряда конденсатора СЗ выбрана рав-ной 120 мс, чтобы избежать возникновения дополнительного запускающего импульса из-за "дребезга" контактов прерывателя после их замыкания.

В табл. 5 приведена экспериментальная зависимость тока, потребляемого электронным блоком, от числа оборотов коленчатого вала для четырехцилиндрового двигателя при напряжении источника питания 12 В.
Из таблицы можно сделать вывод о принципиальном отличии этой системы (в смысле потребления тока от источника питания) от батарейной и транзисторной систем зажигания.
В самом деле, в батарейной системе зажигания (если вал двигателя неподвижен, а контакты прерывателя замкнуты) ток через первичную обмотку катушки зажигания достигает максимального значения и равен примерно 4 А (потребляемая мощность около 50 Вт). В этих же условиях для транзисторной системы зажигания ток первичной обмотки равен примерно 7 А (потребляемая мощность около 80 Вт).
При увеличении оборотов двигателя ток разрыва уменьшается и среднее значение тока, потребляемого от источника, снижается до 1,5-2 А и 3-4 А соответственно для батарейной и транзисторной систем.
В конденсаторной же системе при неработающем двигателе и любом положении контактов прерывателя потребляемый ток от источника питания равен примерно 0,5 А (потребляемая мощность около 6 Вт). Этот ток увеличивается прямо пропорционально скорости вращения вала, достигая при 6000 об/мин примерно 2 А (потребляемая мощность около 25 Вт).
Помимо очевидной экономичности, конденсаторная система имеет некоторые дополнительные преимущества.
Одно из них состоит в следующем. Если в автомобиле с батарейным (или транзисторным) зажиганием забыли выключить замок зажигания, а контакты прерывателя при этом случайно окажутся замкнутыми, то может выйти из строя катушка зажигания, так как через нее длительное время будет протекать значительный ток. В конденсаторной системе такая ситуация не вызывает никаких вредных последствий, не считая некоторой разрядки аккумуляторной батареи током 0,5-0,6 А.
Другое преимущество заключается в том, что конденсаторная система обеспечивает уверенный запуск двигателя рукояткой при сильно разряженной аккумуляторной батарее, поскольку она потребляет ничтожный ток при неподвижном вале двигателя. Запустить двигатель в таких же условиях при батарейной (или транзисторной) системе зажигания не представляется возможным.

Рис. 2. Схема подключения катушки зажигания без вариатора к конденсаторной системе зажигания (для автомобилей "Жигули" всех моделей)
На рис. 34 приведена правая часть принципиальной схемы электронного блока конденсаторной системы, предназначенной специально для автомобиля "Жигули" всех моделей, которая отличается коммутацией катушки зажигания при переводе системы в режим обычного батарейного зажигания (положение 2). Это обусловлено тем, что система зажигания автомобиля "Жигули" не имеет вариатора в первичной цепи катушки зажигания.
Конденсатор С4 на схемах рис. 33, 34 прн установке переключателей В1 и В2 в положение 2 оказывается включенным параллельно контактам прерывателя и выполняет роль искрогасительного конденсатора. Стандартный же конденсатор при установке электронного блока должен быть отключен.

Рис. 3. Монтажная плата и схема соединений электронного блока конденсаторной системы зажигания
Конструктивно электронный блок выполнен в виде прибора, имеющего габариты 100Х100Х50 мм. Корпус прибора изготовлен из листового материала (сплав АМЦАМ) толщиной 2-3 мм.
Внутри корпуса размещается трансформатор Тр1, конденсаторы С2, С4 и печатная плата, показанная на рис. 35 в натуральную величину. Транзисторы T1, T2 укрепляются винтами МЗ на боковой стенке снаружи корпуса. Там же крепятся переключатели В1 и В2. Резисторы R1-R4 монтируются непосредственно между выводами транзисторов и трансформатора Тр1. Для подключения внешних цепей из корпуса прибора через изоляционную втулку выводится пучок проводов, длина которых зависит от места установки прибора под капотом автомобиля. Прибор крепится жестко (без амортизаторов); должен обеспечиваться хороший тепловой контакт с элементами конструкции автомобиля.
При необходимости транзпсторы П216 можно заменить на П216А, П217А, П217В.
Все резисторы - типа МЛТ или МТ; конденсаторы С2 и С4 - типа МБГО соответственно на рабочее напряжение 500 и 400 В; конденсатор С1 - типа К50-6, а конденсатор СЗ - типа МБМ на рабочее напряжение 160 В. Переключатели В1. В2 - типа ТП2-1 или МТ-2.
Трансформатор Тр1 - тороидального типа, выполнен на сердечнике ОЛ 20/32-10 мм, сечение железа- 0,6 см^2. Обмотки трансформатора имеют следующие данные: w1=1700 витков провода ПЭВ-2 0,18; w2, w3 - по 15 витков ПЭВ-2 0,31, мотать одновременно в два провода; w4, w5 - по 50 витков провода ПЭВ-2 0,78. Намотка трансформатора ведется в одну сторону, последовательность намотки соответствует нумерации обмоток. Обмотки изолируют друг от друга слоем кабельной бумаги. После намотки трансформатор полезно про питать лаком для уменьшения гигроскопичности и увеличения электрической прочности.
Несколько практических рекомендаций. Используя конденсаторную систему зажигания, следует увеличить зазоры свечей зажигания примерно до 1 мм независимо от модели автомобиля. Кроме того, при проведении профилактических работ не надо обильно пропитывать маслом фильц кулачка прерывателя во избежание замасливания его контактов. Выполнение этого условия является гарантией надежной работы системы зажигания.
Установку (или проверку) угла опережения зажигания производят в положении 2 переключателей В1, В2 электронного блока с помощью лампы накаливания, включенной параллельно контактам прерывателя, по обычной методике. После окончания работы переключатели вновь переводят в положение 1 ("электронное зажигание"), а октан-корректором устанавливают опережение зажигания на 1° позже, чем рекомендовано заводом-изготовителем для батарейного зажигания. Объясняется это тем, что выработка искры при электронном зажигании происходит чуть раньше (в самом начале размыкания контактов прерывателя), чем при батарейном. Окончательную корректировку опережения зажигания производят на ходу автомобиля.
Наладка блока сводится к проверке генерации преобразователя напряжения (при работе преобразователя слышен негромкий писк с частотой 700-800 Гц) и контролю потребления тока от источника питания (см. табл. 5) в зависимости от числа оборотов двигателя.
При использовании заведомо исправных деталей и правильной распайке концов трансформатора Тр1 электронный блок начинает работать сразу при установке его на автомобиль и соединении с приборами электрооборудования в соответствии с принципиальными схемами рис. 33, 34.
Следует заметить, что такая система"электронного зажигания установлена на автомобиле "Жигули" ВАЗ-2101, который эксплуатируется круглогодично. Об эффективности ее работы можно судить хотя бы по следующим данным. При пробеге свыше 100 тыс. км не было отмечено ни одного отказа системы зажигания, а контакты прерывателя выглядят как новые. За все время работы системы потребовалось лишь один раз (через 50 тыс. км) проверить правильность установки зажигания и зазор между контактами прерывателя. Незначительное изменение зазора было вызвано износом текстолитовой подушечки прерывателя.

Предупреждение. Тахометр автомобиля "Жигули" ВАЗ-2103 при использовании конденсаторной (или транзисторной) системы зажигания работать не будет, так как амплитуда импульсов, поступающих на него с контактов прерывателя, в этом случае равна 12 В.

В тиристорных системах зажигания энергия для искрового разряда накапливается в конденсаторе, поэтому их часто называют конденсаторными. В момент искрообразования конденсатор разряжается через тиристор и первичную обмотку катушки зажигания, и во вторичной обмотке индуктируется высокое напряжение.

Энергия Wc, накапливаемая в конденсаторе С1, зависит от его емкости и напряжения в квадрате (U2), подводимого к конденсатору:Wc = OU2/2.

Поэтому конденсатор заряжают до напряжения 300 + 400 В от бортовой сети 12 + 14 В, или другого источника повышенного напряжения через преобразователь напряжения П и выпрямитель В (смотри рисунок).

Время полного заряда накопительного конденсатора значительно меньше времени накопления энергии в индуктивности и может быть доведено до 2 мс. Оно зависит от мощности и выходного сопротивления преобразователя и емкости накопительного конденсатора. Время заряда конденсатора рассчитывается так, чтобы к моменту подачи следующей искры он был полностью заряжен. Это обеспечивает энергию искры постоянной во всем диапазоне частот искрообразования. Тиристоры менее чувствительны к повышенному напряжению, чем транзисторы. Тиристорные системы зажигания могут работать с катушкой контактной системы батарейного зажигания, максимальная величина ЭДС самоиндукции которой примерно соответствует зарядному напряжению накопительного конденсатора. Конденсатор прерывателя не влияет на работу тиристорной системы. Это позволяет в случае отказа ее быстро перейти на батарейную систему.

Высокое напряжение тиристорной системы зажигания нарастает примерно в десять раз быстрее, чем в батарейной и контактно - транзисторной системах. Поэтому оно обеспечивает пробой искрового промежутка в свечах с загрязненными, покрытыми нагаром изоляторами. Но продолжительность разряда в искровом промежутке значительно меньше (около 300 мке), чем в системах с накоплением энергии в индуктивности (около 1 мс), так как частота колебаний контура накопительный конденсатор - первичная обмотка в тиристорной системе значительно выше.

Тиристорные системы зажигания по принципу действия делят на две группы: с импульсным непрерывным (многоимпульсным) и одноимпульсным накоплением энергии в емкости.

В импульсных системах конденсатор заряжается одним импульсом прямоугольной формы до конечного напряжения, а затем наступает пауза до момента его разряда В схемах с непрерывным накоплением энергии конденсатор заряжается многочисленными прерывистыми импульсами напряжения.

Системы с импульсным накоплением позволяют простыми средствами стабилизировать напряжение заряда накопительного конденсатора, т. е. сделать его независящим от изменений напряжения питания и других дестабилизирующих факторов. Однако при малой пусковой частоте вращения вала двигателя в этих системах, вследствие увеличения времени паузы, накопительный конденсатор к моменту искрообразования успевает несколько разрядиться, и напряжение искрообразования уменьшается. Это налагает жесткие требования на значения токов утечки в элементах вторичной цепи - тиристоре, накопительном конденсаторе, выпрямительном диоде и является недостатком систем с импульсным накоплением.

Системы с непрерывным накоплением энергии свободны от указанного недостатка. Эти системы практически нечувствительны к утечкам в элементах вторичной цепи и обеспечивают независимость напряжения искрообразования от частоты вращения вала двигателя.

Принципиальная схема тиристорной системы зажигания с непрерывным накоплением энергии приведена на рисунке №2

Она включает в себя преобразователь П постоянного напряжения 12 ¦ 15 В в переменное 300 + 400 В с частотой около 500 Гц. выпрямитель переменного напряжения В, тиристор VD5, накопительный конденсатор С1, блок управления и катушку зажигания КЗ.

В качестве преобразователя напряжения может быть использован приведенный на схеме двухтактный преобразователь с самовозбуждением к трансформаторной связью, собранный по схеме с общим коллектором на транзисторах VTI, VT2, резисторах R1, R2, R3, R4 и трансформатоpeTI.

При включении зажигания напряжение бортовой сети подводится к средней точке обмотки трансформатора и коллекторам транзисторов. Возникает ток в двух параллельных цепях, который течет от средней точки трансформатора через его верхнюю половину, резисторы Rl, R3, транзистор VT1 и через нижнюю половину трансформатора, резисторы R2, R4, транзистор VT2. Вследствие разброса параметров транзисторов и резисторов тЪк в одной половине трансформатора (допустим, верхней) пойдет несколько больший, чем во второй (нижней). Это вызывает ускоренное отпирание одного транзистора (VT1) и запирание второго (VT2). В таком состоянии транзисторы находятся, пока магнитный поток в сердечнике трансформатора не достигнет насыщения. Происходящее при этом резкое замедление нарастания тока вызывает в обмотках трансформатора ЭДС противоположной полярности, которая переключает транзисторы: запирает VT1 и отпирает VT2. Транзисторы переключаются с частотой около 500 Гц, меняя направление тока в обмотке трансформатора, и на выходе трансформатора появляется переменное напряжение порядка 350 ¦ 400 В. Двухполупериодный выпрямитель на диодах VD2 + VD4 преобразует переменное напряжение в постоянное, которым заряжается конденсатор С1. В момент искрообразования по сигналу контактного или бесконтактного датчика с блока управления подается положительный импульс на управляющий электрод тиристора VD5. Тиристор открывается и конденсатор разряжается через первичную обмотку катушки зажигания, а во вторичной обмотке индуктируется высокое напряжение.

Рассмотрим подробнее основные этапы работы системы: заряд накопительного конденсатора после переключения ключа VD5 в положение 1 (этап 1, рис 2) и процессы, происходящие после размыкания контактов прерывателя и переключения коммутатора VD5 в положение 2 (этап 2, рис. 3).

Этап 1. Согласно схеме замещения (рис. 2) цепь, состоящая из накопительного конденсатора С1, резистора Rвн, сопротивление которого равно внутреннему сопротивлению преобразователя, и резистора Rут, сопротивление которого равно результирующему сопротивлению утечки во вторичной цепи, с помощью коммутатора VD5 подключается к источнику постоянного напряжения Ub, которым является преобразователь.

Напряжение на конденсаторе возрастает по экспоненциальному закону:

Где постоянная времени цепи заряда конденсатора.

Как правило, Rут > Rвн (в противном случае, как будет показано ниже, система вообще не работоспособна), и напряжение на накопительном конденсаторе через время t« ЗТ = 3Rbm С1 практически достигает установившегося значения Ub.
Энергия, запасенная в электрическом поле конденсатора, при этом равна: We1=C1*U2в/2

Необходимым условием нормальной работы системы является полный заряд конденсатора С1 до напряжения Ub, за время между двумя искрами при максимальной частоте вращения вала двигателя.Учитывая, что конденсатор в схеме рис. 1 начинает заряжаться лишь после замыкания контактов прерывателя, и считая скважность работы прерывателя равной 2, это условие для четырехтактного двигателя будет иметь вид:

где z - число цилиндров двигателя; Nmax - максимальная частота вращения коленчатого вала двигателя, об/мин. Для двухтактного двигателя числитель правой части должен быть равен 10. Так, если емкость накопительного конденсатора CI = 1 мкФ, двигатель четырехтактный четырехцилиндровый, имеющий максимальную частоту вращения коленчатого вала птах = 6000 об/мин, то Т< 0,83 мс, и внутреннее сопротивление преобразователя не должно превышать:

Рассмотрим подробнее влияние сопротивления утечки Ryr на работу системы. Сопротивление утечки в основном определяется током утечки тиристора, используемого в качестве коммутатора. Максимальное значение юка утечки имеют тиристоры типа КУ202М (Н): до 10 мА при напряжении 400 В. Сопротивление утечки в этом случае равно:


Таким образом, условие Ryr > Rвн выполняется даже и в этом крайнем случае, и, следовательно, влиянием сопротивления утечки в системах с непрерывным накоплением энергии можно пренебречь. Тем более, что в действительности ток утечки у подавляющего большинства тиристоров этого типа не превышает0,2 + 0,3 мА.

На практике выполнение условия: о полном заряде конденсатора С1 до напряжения Ub, за время между двумя искрами при максимальной частоте вращения вала двигателя, не встречает затруднений. Задавшись определенной энергией Wcl и выбрав значение выходного напряжения преобразователя Ub, из выражения: С1 = 2 Wct/U в - определяют емкость накопительного конденсатора. Внутреннее сопротивление преобразователя Rbh определяется его мощностью. Чем больше мощность преобразователя, тем меньше его внутреннее сопротивление.

Применяя достаточно мощный преобразователь, можно добиться того, чтобы энергия Wcl, а значит, и вторичное напряжение, были постоянными вплоть до самой высокой частоты вращения коленчатого вала двигателя. Что же касается малой частоты вращения, то очевидно, что если накопительный конденсатор успел зарядиться до напряжения Ub при максимальной частоте вращения, он тем более успеет зарядиться до этого напряжения при малой частоте вращения коленчатого вала.

Этап 2. Подключение заряженного накопительного конденсатора С1 к первичной обмотке катушки зажигания.

На рис. 3дана упрощенная схема замещения для второго этапа рабочего процесса.

При ее составлении и анализе приняты следующие допущения: гальваническая связь между обмотками катушки зажигания устранена, искровой контакт распределителя заменен скользящим, распределенные емкости вторичной цепи заменены одной сосредоточенной емкостью С1, активные сопротивления обмоток катушки зажигания равны нулю, коэффициент связи между обмотками равен единице, шунтирование вторичной цепи отсутствует.

Согласно схеме замещения после размыкания контактов прерывателя и переключения коммутатора VD5 в положение 2 в первичной цепи образуется колебательный контур, состоящий из индуктивности L1 первичной обмотки W1 катушки зажигания и суммы емкостей накопительного конденсатора CI и вторичной цепи C2- (W2/W1), приведенной к первичной. Поскольку до коммутации конденсатор С1 был заряжен, после нее в первичном контуре возникают собственные затухающие колебания, частота которых (без учета процессов во вторичной цепи) равна:

Вследствие того, что в момент коммутации параллельно накопительному конденсатору подключается емкость С2 (W2AV1), напряжение на накопительном конденсаторе уменьшается, и максимум первичного напряжения, определенный из условий сохранения заряда, будет равен:

Очевидно, что если Ulmax является максимумом первичного напряжения, то максимум вторичного напряжения определится выражением:

Из этого выражения следует, что, выбрав соответствующим образом емкость накопительного конденсатора С1 так, чтобы CI > С2 {W2/W1), можно добиться малой зависимости вторичного напряжения U2max от значения емкости С2, что принципиально невозможно в классической системе зажигания

Кроме того, в конденсаторной системе зажигания максимум вторичного напряжения мало зависит от значения сопротивления, шунтирующего вторичную цепь. Практика подтверждает, что конденсаторная система зажигания сохраняет работоспособность при низких значениях шунтирующего сопротивления, вплоть до 100 К. Это существенно снижает требования к уходу за свечами зажигания (их чистке, регулировке зазора и т. п.). Срок использования свечей может быть значительно увеличен, поскольку свечи, которые уже нельзя задействовать в классической системе зажигания, могут удовлетворительно работать в конденсаторной системе.

Это связано с тем, что в качестве коммутатора в конденсаторной системе зажигания обычно применяют тиристоры, время переключения которых, определяющее длительность фронта первичного напряжения, всего несколько микросекунд. Конечно, длительность фронта вторичного напряжения зависит, кроме того, от параметров катушки зажигания. Однако даже при применении катушек от классической системы зажигания, фронт импульса вторичного напряжения в конденсаторной системе получается значительно круче, чем в классической.

Очевидно, что потери энергии при конкретных значениях шунтирующего сопротивления и вторичного напряжения пропорциональны времени действия этого напряжения. Поэтому при крутом фронте за время, пока напряжение достигнет максимума, потери будут меньше, чем при пологом фронте. Этим и объясняется малая зависимость U2max в конденсаторной системе зажигания от сопротивления, шунтирующего вторичную цепь.

Схема с непрерывным накоплением энергии в конденсаторе отличается простотой, технологичностью и надежностью конструкции. Недостаток ее - зависимость энергии накопительного конденсатора от напряжения источника питания. Зимой, когда напряжение батареи при пуске снижается до 7 + 8 В, конденсатор заряжается до напряжения около 190 В, накопленная энергия в нем снижается в 4 раза, и пуск затрудняется.

Конденсаторные системы с импульсным накоплением энергии в емкости позволяют иметь хорошую искру при уменьшении напряжения в бортовой сети до 6,5 В. Но эти системы сравнительно сложнее и дороже. К полупроводниковым приборам, применяемым в них, повышены требования в отношении токов утечки, которые должны быть не более 0,1 мА.

Всистемах с импульсным накоплением энергии, накопительный конденсатор заряжается одним мощным импульсом сразу же после окончания искрового разряда в свече зажигания. На рис. 4 приведена принципиальная схема конденсаторной системы зажигания с импульсным
накоплением энергии, а на рис. 5 временные диаграммы ее работы.

Схема включает в себя транзистор VT1, который работает в ключевом режиме, повышающий трансформатор Т1, накопительный конденсатор С1, два диода VDi, VD2, тиристор VD3 и катушку зажигания (КЗ).

При замкнутом выключателе зажигания S и в момент размыкания контактов прерывателя (ti), транзистор VTI переходит в состояние насыщения. Ток управления течет от батареи через резисторы Яд, RI и R2, базу и эмиттер транзистора на корпус автомобиля и"-" батареи. Транзистор проводит линейно - нарастающий ток первичной обмотки трансформатора Т1. В магнитном поле Tf накапливается энергия. По мере увеличения тока 16 в обмотке (01 увеличивается падение напряжения на резисторе R3. Это напряжение поступает на вход схемы управления и, когда ток достигает заданного значения 1р, ключи VT1 и VD3 по сигналу err схемы управления закрываются. Ток в обмотке 0)1 прекращается (Ь, рис. 5). Энергия,накопленная в магнитном поле трансформатора Т1, равная L1 1 р/2, где L1 индуктивность обмотки (01 трансформагора Т1, создает в его обмотках импульсы напряжения. Положительный импутьс с конца обмотки (02 (начала обмоток на рис. 4. обозначены точками) проходит через диод VD1 и заряжает накопительный конденсатор С1 до высокого напряжения 350 В (ts рис. 5). Диод VD 1 предотвращает разряд конденсатора С1 через обмотку 0)2 после окончания действия импульса.

Таким образом, напряжение заряда накопительного конденсатора не зависит от напряжения питания, и при постоянных значениях т|, LI и CI определяется лишь током разрыва 1р.

Указанное свойство системы позволяет относительно простыми средствами получить стабилизированное вторичное напряжение. Для этого необходимо иметь схему управления со стабильным порогом срабатывания. Практическая реализация такой схемы не встречает затруднений.

В момент U контакты прерывателя замыкаются, что не оказывает влияния на работу системы.

В момент ts контакты прерывателя снова размыкаются, а ключи VT1 и VD3 открываются.

Ключ VT1 подключает обмотку С01 трансформатора Т1 к источнику питания и через нее снова начинает протекать линейно - нарастающий ток. Ключ S2.2 подключает заряженный до напряжения 350 В накопительный конденсатор к первичной обмотке WI катушки зажигания. Во
вторичной обмотке W2 катушки зажигания индуцируется высокое напряжение, которое через распределитель поступает к свечам зажигания. Затем описанные процессы повторяются. В момент t6 ток в обмотке (01 трансформатора достигает заданного значения 1р, в момент t7 накопительный конденсатор снова заряжается. В момент U контакты прерывателя размыкаются и в свече зажигания происходит искровой разряд.

Между моментами окончания заряда накопительного конденсатора (b, t?, рис. 5) и моментами, когда конденсатор подключается к катушке зажигания (t5, ts) проходит интервал времени XI В течение этого времени накопительный конденсатор разряжается через обратные сопротивления диода VD 1, тиристора и свое собственное сопротивление изоляции, и напряжение на нем к моменту искрообразования уменьшается на AU. На рис. 5 пунктирной линией показан идеальный случай, когда утечек нет.

Чем ниже частота искрообразования и, следовательно, больше период Ти интервал XI, тем больше разрядится накопительный конденсатор и тем ниже будет напряжение искрообразования. При значительном токе утечки может случиться, что вторичное напряжение при малых пусковых частотах вращения вала двигателя упадет настолько, что окажется недостаточным для пробоя искрового промежутка свечи зажигания.

Определим допустимый ток утечки во вторичной цепи системы с импульсным накоплением энергии, при котором система остается работоспособной при самых малых пусковых частотах вращения вала двигателя, для которых XI = Т.

Количество электричества, первоначально запасенное в накопительном конденсаторе С1, составляет: Ql-Cl-UI.
где С1- емкость накопительного конденсатора; U1 - первоначальное напряжение его заряда.

Суммарный ток утечки во вторичной цепи обозначим 1ут.
Тогда количество электричества, потерянное накопительным конденсатором за время XI * Т, будет равно: AQ - 1ут- T = I)nr/F, где F - частота искрообразования.

Количество электричества, оставшееся в накопительном конденсаторе к моменту искро-образования, определим выражением; Q2=Q1 -AQ=C1 - 111 -Iyr/F, а напряжение U1 на накопительном конденсаторе, соответствующее этому количеству электричества, определится как: U2=Q2/C1 = U1 -Iyr/(F C1), и, следовательно, уменьшение напряжения к моменту искрообразования будет равно: ди = 1ут/ (F С1).

Окончательное выражение для определения допустимого суммарного тока утечки 1ут, мА, для четырехтактного четырехцилиндрового двигателя будет иметь вид:
1ут5п-С1 -U1 -у/3, где п - частота вращения вала двигателя, об/мин; у = 100 AU/U1 - допустимое уменьшение напряжения искрообразования при частоте п, %; Ш - первоначальное напряжение заряда накопительного конденсатора, В; С1 - емкость накопительного конденсатора, мкФ.

Вкачестве примера, определим допустимое значение тока утечки для следующего практического случая, минимальная пусковая частота вращения вала двигателя п = 150 об/мин; емкость накопительного конденсатора CI = 1 мкФ; первоначальное напряжение на накопительном конденсаторе U1 = 350 В, а допустимое его уменьшение V = 15% (4U =52 В):
\ут£ 150 -10 350 - 1S/3 = 0,26мА.

Как было указано выше, ток утечки тиристора типа КУ202М (Н) согласно его техническим условиям может достигать 10 мА, и несмотря на это такой тиристор работоспособен в системе с непрерывным накоплением энергии. Для системы же с импульсным накоплением такой тиристор непригоден. Даже если ток утечки тиристора будет равен 1 мА, то напряжение искрообразования при пусковой частоте вращения вала двигателя п = 150 об/мин уменьшится на 57%, т. е. к первичной обмотке катушки зажигания будет подводиться не 350 В, а всего 150 В, и система будет неработоспособна.

В связи с этим тиристоры для систем с импульсным накоплением энергии необходимо специально отбирать по току утечки. На практике, правда, это не встречает затруднений, так как у подавляющего большинства тиристоров - ток утечки составляет 0,2 + 0,3 мА.

Как и в системе с непрерывным накоплением энергии, в данном случае необходимым условием нормальной работы системы является также полный заряд накопительного конденсатора к моменту новообразования при максимальной частоте вращения вала двигателя.

Из рис5 видно, что время заряда накопительного конденсатора складывается из двух фаз - времени Т2 нарастания тока в обмотке (01 трансформатора Т1 и времени Тз непосредственного заряда конденсатора после разрыва тока. Ввиду того, что нарастание тока в обмотке (01 начинается одновременно с размыканием контактов прерывателя, условие нормальной работы системы с импульсным накоплением для четырехтактного двигателя будет иметь вид: Т2 + ТЗ < 120/Z Птах, где г - число цилиндров; птах - максимальная частота вращения вала двигателя.

Сравнение этого условия с аналогичным для СЗ с непрерывным накоплением показывает, что оно менее жесткое, и на практике его выполнение не встречает затруднений.

Процессы, происходящие в момент размыкания контактов прерывателя и переключения ключа в положение 2, в системе с импульсным накоплением энергии не отличаются от аналогичных процессор в системе с непрерывным накоплением.

Системы с импульсным накоплением энергии имеют наибольшую скорость нарастания высокого напряжения. Но длительность индуктивной составляющей искрового разряда в свечах уменьшена от единиц миллисекунд (в системах с накоплением энергии в индуктивности) до десятков или сотен микросекунд. Это ухудшает воспламенение и сгорание рабочей смеси на средних нагрузках и, следовательно, приводит к повышению расхода топлива и токсичности отработавших газов. Для устранения указанных недостатков надо корректировать автоматы опережения зажигания и увеличивать зазор в свечах до 1,2 + 1,5 мм, что приводит к дальнейшему возрастанию вторичного напряжения и напряженной работе изолирующих частей высоковольтной системы.

А. Кузьминский, В. Ломанович

Обычная батарейная система зажигания обладает серьезными недостатками. Наиболее существенные из них: малая мощность искры, быстрый износ контактов прерывателя, коммутирующих ток порядка 4 А в цепи первичной обмотки катушки зажигания, и большая потребляемая мощность (порядка 50 Вт).

Предлагаемые тиристорные системы зажигания позволяют в несколько раз уменьшить мощность, потребляемую от бортсети автомобиля, и в 20-30 раз снизить ток, протекающий через контакты прерывателя. Мощность искры при этом возрастает не менее чем в 5 раз и почти не зависит от состояния свечей и прерывателя.

Ниже приводится описание двух конструкций блоков электронного зажигания на тиристорах «БТЗ-1» и «БТЗ-2». Они очень хорошо зарекомендовали себя во время длительной эксплуатации на автомобилях марки «Москвич», «Волга» и «Запорожец». Блоки тиристорного зажигания собраны из обычных деталей широкого применения.

Принципиальная схема «БТЗ-1» приведена на рис. 1.

Рис. 1. Принципиальная схема блока тиристорного зажигания БТЗ-1

Кроме питания высоковольтным напряжением свечей зажигания, этот блок позволяет использовать в автомобиле различные маломощные бытовые приборы, рассчитанные на подключение к электросети с напряжением 220 В (электробритва, зубная щетка и пр.).

Так как стартер потребляет большой ток от аккумуляторной батареи, то в холодное время года напряжение батареи при запуске двигателя может снижаться до 6-7 В. Естественно, что в этот момент ухудшаются условия искрообразования и затрудняется пуск двигателя. Для поддержания необходимой мощности искры в схему блока зажигания «БТЗ-2» (рис. 2) введено электромагнитное реле Р1, обмотка которого включается тем же выключателем, что и стартер.

Рис. 2. Принципиальная схема блока тиристорного зажигания БТЗ-2


Контакты Р1/1 и Р1/2 при срабатывании реле включают дополнительную повышающую обмотку (V) трансформатора Tp1. Таким образом удается поддерживать необходимую мощность искры даже при падении напряжения аккумуляторной батареи до 5-6 В. Низкочастотный фильтр Др1 и С1 в цепи питания служит для подавления радиопомех.

Оба блока электронного зажигания выполнены по конденсаторно-контактной схеме с коммутирующим тиристором. Для получения необходимой энергии искрообразования используется накопительный конденсатор С2 (С3), заряжающийся от высоковольтного преобразователя напряжения и разряжающийся через тиристор на первичную обмотку катушки зажигания. На вторичной обмотке катушки зажигания при этом индуцируется высокое напряжение, поступающее на свечи двигателя через распределитель. Преобразователи напряжения в обеих системах зажигания выполнены по схеме симметричного блокинг-генератора. Схема позволяет использовать для установки транзисторов Т1 и Т2 общий неизолированный теплоотвод, соединенный с шасси («общий минус»). При этом, помимо конструктивного упрощения узла преобразователя, значительно улучшается тепловой режим всего устройства и повышается надежность его работы.

Рассмотрим более подробно схему блока зажигания «БТЗ-1», приведенную на рис. 1. Принцип работы двухтактных транзисторных генераторов с трансформаторной обратной связью достаточно хорошо известен. Транзисторы Т1 и Т2 работают в ключевом режиме, коммутируя ток в первичной обмотке трансформатора Tp1. Во вторичной обмотке Tp1 при этом индуцируется высокое напряжение симметричной формы (близкой к прямоугольной). Ко вторичной обмотке Tp1 подключен выпрямительный мост Д1-Д4, с которого снимается постоянное напряжение около 400 В, используемое для зарядки конденсатора С2. Тиристор Д5 вначале закрыт. В момент замыкания контактов прерывателя, закорачивающего зажимы 3 и 7 устройства зажигания, конденсатор С3 заряжается через диоды Д8-Д9 и резистор R7 почти до полного напряжения аккумуляторной батареи. Резистор R7 обеспечивает некоторую задержку времени заряда, устраняя воздействие «дребезга» контактов прерывателя в момент замыкания.

При размыкании контактов прерывателя (зажимы 3-7 БТЗ) конденсатор С3 разряжается через диод Д7, управляющий электрод тиристора Д5 и резисторы R9- R10. При этом на управляющий электрод тиристора Д5 поступает положительный импульс, открывающий тиристор. Накопительный конденсатор С2, заряженный до напряжения около 400 В, разряжается через тиристор Д5 и первичную обмотку катушки зажигания (зажимы 1 и 2 БТЗ). Одновременно открывшийся тиристор Д5 шунтирует выходную цепь преобразователя напряжения, срывая генерацию.

Отрицательный имлульс, поступающий с первичной обмотки катушки зажигания через цепочку R8-Д6 после переключения тиристора Д5, мгновенно перезаряжает конденсатор С3 Вследствие этого длительность управляющего импульса, открывающего тиристор, не превышает 2 мкс. Это обеспечивает образование одной искры и в то же время предохраняет тиристор от многократного переключения. После разряда конденсатора С2 тиристор Д5 закрывается, возобновляется генерация в преобразователе и весь процесс повторяется.

Для облегчения запуска преобразователя напряжения на базы транзисторов Т1 и Т2 задается небольшое отрицательное смещение с делителей напряжения R1, R2 и R3, R4. В целях предотвращения самопроизвольного переключения тиристора Д5 под воздействием помех, возникающих при работе преобразователя напряжения и некоторых элементов электрооборудования автомобиля (генератор, реле-регулятор, указатели поворотов и т. д.), в цепь управления тиристора введен фильтр С1 Д9. Кроме того, дополнительно на управляющий электрод тиристора Д5 задается защитное отрицательное смещение 0,5-0,7 В, снимаемое с цепочки R6 Д8.

Отличие второго преобразователя напряжения (рис. 2) от первого состоит в том, что он имеет две повышающих обмотки (I и V). С помощью контактов электромагнитного реле R1 эти обмотки могут включаться последовательно для увеличения напряжения, поступающего на вход выпрямительного моста Д1-Д4 при затрудненном запуске двигателя. Второй выпрямительный мост, собранный на диодах Д5-Д8, предназначен для питания дополнительных маломощных потребителей тока. Он может обеспечить мощность около 20 Вт, при напряжении 220-230 В. Зажим VI («синхр.») служит для подключения вспомогательных приборов системы контроля и регулирования работы двигателя (тахометрического стабилизатора напряжения и др.).

Детали и конструкция блоков зажигания. При изготовлении устройства зажигания особое внимание следует уделить трансформатору преобразователя напряжения, от которого в основном зависит надежность работы электронного блока. Лучше всего воспользоваться для изготовления этого трансформатора тороидальным сердечником из стали марки Э330-Э340 (ХВП) или из сплава 34НКМП или 79НМ (пермаллой). В первом случае можно применить сердечник ОЛ25/40х12,5 или подобный ему, но с несколько большим сечением. Из пермаллоевых сердечников можно рекомендовать ОЛ25/40Х6,5 (2 шт.).

Можно также использовать для изготовления этого транформатора сердечник из обычной трансформаторной стали марки Э42 или Э43 (пластины Ш16, набор 16 мм). При подборе сердечника нужно учитывать, что сечение его магнитопровода должно быть не менее 2 см2. Каркас для катушки трансформатора делают из электрокартона, выводы обмоток закрепляют на периметре щечки каркаса. Для придания трансформатору повышенной влагостойкости, катушку после намотки пропитывают электроизоляционным лаком или компаундом (например, КП-10).

Намоточные данные трансформатора Тр1, выполненного на Ш-образном и тороидальном сердечниках, приведены в таблице.


Вначале на катушку наматывают повышающую обмотку I. Для межслоевой изоляции можно использовать кабельную бумагу. Тороидальный сердечник перед укладкой повышающей обмотки изолируют двумя-тремя слоями лакоткани или фторопласта. Затем наматывают обмотки II, III и IV. Для улучшения симметрии преобразователя и уменьшения индуктивности рассеяния трансформатора базовые и эмиттерные обмотки наматывают в два провода, располагая витки обмоток III и IV между витками обмотки II.

Трансформатор Tp1 в схеме на рис. 2 выполнен на тороидальном сердечнике типа ОЛ32/50 X 16. Основная повышающая обмотка I у него содержит 1200 витков провода ПЭЛШО 0,25; дополнительная повышающая обмотка V имеет 600 витков того же провода; эмиттерная обмотка II содержит 33 + 33 витка провода ПЭВ-2 1,0; базовые обмотки III и IV имеют по 10 витков провода ПЭЛШО 0,41. Обмотки располагаются в том же порядке, что и у Tp1 в схеме на рис. 1.

Если отсутствуют сердечники указанных марок и типоразмеров, то несложно определить пригодность имеющегося сердечника для указанных трансформаторов. Общая мощность трансформатора, используемого в преобразователе напряжения, определяется его суммарной нагрузкой. Она, в свою очередь, равна мощности, затрачиваемой на искрообразование при максимальных оборотах двигателя и максимальной мощности одного или нескольких потребителей тока, которые могут подключаться к электронному блоку. Если эти потребители тока во время движения автомобиля не используются, учитывается лишь одна из указанных нагрузок (максимальная).

Величина полезной мощности, затрачиваемая на искрообразование, зависит от числа цилиндров двигателя и скорости вращения коленчатого вала.

Для четырехтактного двигателя частота искрообразования равна:


Примерно такая же мощность расходуется при работе электробритвы (15-18 Вт). Так как обычно электронный блок используется для питания одной из указанных нагрузок, то очевидно, что максимальная мощность преобразователя может не превышать 18-20 Вт.

В том случае, когда величина индукции насыщения (Вm), имеющегося в наличии сердечника, неизвестна, прибегают к экспериментальному методу. На сердечник наматывают базовые и эмиттерные обмотки для включения в преобразователь. Их соединяют друг с другом и подключают к транзисторам T1 и Т2, как это показано на схеме на рис. 1. Намотка ведется в два провода; базовые обмотки должны иметь по 10-15 витков провода ПЭЛШО 0,25-0,31, эмиттерные - по 30-50 витков провода ПЭЛ-2 1,0. Подключив источник питания, определяют частоту генерации и ток, потребляемый устройством. Для измерения частоты лучше всего воспользоваться электронным осциллографом или частотомером. В домашних условиях можно приближенно определить частоту генератора, сравнив высоту звука прослушиваемого при работе преобразователя с тоном музыкального инструмента, например, пианино. Обычно частота генерации не превышает 200-600 Гц (в зависимости от сердечника). Форма генерируемых колебаний должна быть по возможности близкой к прямоугольной, ток, потребляемый устройством, не должен превышать 0,5-0,6 А при напряжении источника питания 12 В. Значение Вm определяют по формуле:

Следует указать, что оптимальная частота для преобразователя с трансформатором, выполненном на обычном сердечнике из трансформаторной стали, не должна превышать 200 - 250 Гц. В противном случае, тепловые потери в сердечнике трансформатора резко возрастают, так что нагрев его может превысить допустимую величину. Заметим также, что при использовании сердечников с низкими электромагнитными параметрами увеличение частоты преобразователя приводит к искажению формы генерируемого напряжения и значительному снижению к. п. д. преобразователя. Для сердечников типа ШЛ оптимальная частота преобразователя лежит в пределах 250 - 300 Гц и для сердечников типа ОЛ - 600 - 700 Гц. Необходимо учитывать также, что с увеличением частоты преобразователя возрастают потери в полупроводниковых приборах и увеличивается ток потребления преобразователя.

В целях повышения надежности работы устройства желательно при расчете предусмотреть двухкратный запас по мощности у трансформатора преобразователя.

После выбора сердечника определяют намоточные данные трансформатора. Число витков половины эмиттерной обмотки (приходящихся на один транзистор) находим с помощью следующего выражения:


Затем определяем диаметр провода для всех обмоток трансформатора преобразователя. Для этого вначале находим амплитудное значение тока коллектора транзисторов Т1 и Т2

Таким же образом определяем действующее значение тока в дополнительной повышающей обмотке Tp1 в схеме рис. 2:


Перед установкой транзисторов на теплоотводе нужно убедиться в их исправности. Желательно подобрать транзисторы с равными (или по возможности близкими) величинами обратных токов коллекторных переходов и коэффициентов усиления по току (Вст). Плоскость теплоотвода должна быть тщательно отшлифована, чтобы обеспечить надежное прилегание к поверхности транзисторов, которые закрепляют на теплоотЕоде с помощью четырех винтов с резьбой М3. Заметим, что в схемах на рис. 1 и 2 можно использовать любые мощные транзисторы (например, П213-217, П210 и пр.). Следует только учитывать допустимое напряжение между коллектором и эмиттером транзистора и мощность рассеяния. Суммарная мощность рассеяния, выделяющаяся на транзисторах Т1 и Т2, находится в пределах 15-22 Вт. Поверхность пластинчатого охладителя (радиатора), используемого для установки транзисторов Т1 и Т2, должна иметь площадь не менее 25 - 30 см2. При этом предельная температура для транзисторов преобразователя не будет превышать 60 -70° С.

Все выпрямительные диоды перед установкой в схему блоков зажигания обязательно проверяют. При подключении диодов Д1-Д4 и Д10 к источнику постоянного напряжения 600 В ток утечки не должен превышать 10 мкА. Для проверки диодов Д5-Д8 в схеме на рис. 2 испытательное напряжение может быть снижено до 400 В.

Тиристоры Д5 и Д11 желательно проверить на напряжение и ток переключения. Для этого собирают схемы, приведенные на рис. 3,а и б. Затем постепенно увеличивая напряжение источника питания (например, с помощью автотрансформатора ЛАТР-1 или ЛАТР-2), проверяют указанные параметры тиристоров. Показания вольтметра В1 (рис. 3,а) в момент переключения тиристора Д5, скачком упадут до нуля, а миллиамперметр A1 при этом отметит резкое увеличение тока. Заметим, что тиристоры с напряжением переключения ниже 500 В в устройствах зажигания применять не следует. Точно также не рекомендуется использовать в схемах на рис. 1 и 2 тиристоры с током утечки более 1 мА (рис. 3,б). Такие тиристоры во время работы будут сильно перегреваться и быстро выйдут из строя. При проверке тиристоров нужно учесть, что у некоторых из них (например, у тиристоров типа КУ202Н) напряжение переключения может достигать 700 В, а ток утечки при рабочем напряжении 400-450 В не превышает нескольких десятков мкА.

Рис. 3. Схемы проверки тиристоров: а - проверка напряжения переключения; б - проверка тока утечки


Все постоянные резисторы, используемые в схемах на рис. 1 и 2, типа МЛТ-0,5 и МЛТ-2. В схеме на рис. 1 конденсатор С1 - электролитический, типа К50-6, С2 - типа МБГО на номинальное напряжение 400 В, С3 - металлобумажный, МБМ. В схеме на рис. 2 конденсатор С1 - электролитический типа К50-6, С2 - три параллельно включенных конденсатора типа К50-6 100,0X25 В, С3 - МБГО на номинальное напряжение 600 В, С4 - металлобумажный, МБМ.

Дроссель Др1 (рис. 2) выполнен на сердечнике КД-ТД-4 (ШЛ 16 X 20). Обмотка его содержит 120 витков провода ПЭВ-2 1,0. Электромагнитное реле Р1 (рис. 2) типа РЭС-9 (паспорт № РС4.524.203).

Основанием блока зажигания, выполненного по схеме на рис. 1, служит дюралюминиевая пластина размером 160X70X 6 мм. Транзисторы Т1 и Т2 укреплены на дюралюминиевой пластине размером 70 X 45 X 6 мм. Ее устанавливают на расстоянии 50 мм от края пластины-основания и закрепляют в вертикальном положении с помощью двух винтов с резьбой М4. На верхней торцевой части этой пластины закрепляют тремя винтами с резьбой М3 свободный от деталей край верхней платы колончатого модуля, объединяющего почти все мелкие схемные детали блока зажигания (исключая трансформатор Tp1, накопительный конденсатор С2, транзисторы Т1 и Т2 и тиристор Д5). Все детали, подлежащие монтажу в модуле, располагают в указанном на рис. 4 порядке между верхней и нижней платами модуля, установленными на расстоянии 35 мм друг от друга.


Схема соединительных перемычек на платах модуля приведена на рис. 5,а и б. Отметим, что качество монтажа и надежность всех паек в модуле должны быть безупречными, так как иначе он быстро выйдет из строя при работе на автомобиле. Платы модуля могут быть выполнены способом печатного монтажа из фольгированного стеклотекстолита или гетинакса. Однако практика показала, что значительно более надежными в эксплуатации оказались объемные модули с навесными деталями, установленными на монтажных лепестках или пистонах. Для монтажа лучше всего использовать медный посеребренный провод диаметром 0,5-0,75 мм.

Закрепив объемный модуль на радиаторе транзисторов Т1 и Т2, рядом с ним на пластине-основании устанавливают трансформатор Tp1. С другой стороны модуля располагают накопительный конденсатор С2 и тиристор Д5, который закрепляют на основании с помощью небольшого медного или латунного угольника, выполняющего также роль дополнительного теплоотвода для тиристора. Корпус тиристора изолируют с помощью двух слюдяных шайб толщиной 0,05-0,1 мм и проходной фторопластовой втулки, надетой на крепежный винт.

Блок зажигания, выполненный по схеме рис. 1, помещают в защитный металлический кожух размером 155X80X75 мм. Его можно изготовить из листового дюралюминия толщиной 1,5-2,0 мм или стального листа толщиной 1,0 мм. Для лучшей герметизации рекомендуется проложить резиновую окантовку между основанием и кожухом блока.

Рис. 5. Монтажные платы объемного модуля БТЗ-1: а - верхняя плата (вид сверху); б -нижняя плата (вид снизу)


Правильно собранный блок зажигания, особенно при тщательной проверке всех устанавливаемых в схему деталей, обычно в дополнительной наладке не нуждается. Если устройство зажигания переходит в режим непрерывной генерации и не управляется контактами прерывателя, то либо в нем применен тиристор с низким напряжением переключения, либо пробит диод Д9. Иногда это явление может наблюдаться из-за недостаточной емкости конденсатора С1 и неисправности диода Д6. Если транзисторы Т1 и Т2 заведомо исправны, а генерации все же нет, то для выявления причины неисправности преобразователя напряжения отключают вначале от повышающей обмотки трансформатора Tp1 конденсатор С2, затем тиристор Д5 и выпрямительный мост Д1-Д4 и заменяют неисправные детали. В тех случаях, когда работа преобразователя сопровождается хриплым или шипящим звуком, проверяют исправность диодов Д1-Д4 и транзисторов Tl-Т2. Причиной неисправности накопительного конденсатора С2 может явиться замыкание одного из выводов на корпус или пробой между обкладками конденсатора. В случае неисправности тиристора Д5 прежде всего нужно убедиться в целости слюдяных шайб и проходной втулки, изолирующих корпус тиристора от крепежного угольника. Если изоляция не повреждена и сам тиристор исправен, а генерации все же нет даже при отключении повышающей обмотки Tp1 от всех перечисленных деталей, то причину неисправности следует искать в самом трансформаторе преобразователя напряжения (неправильное включение, обрыв или межвитковые замыкания в обмотках).

Отсутствие искрообразования при размыкании контактов прерывателя указывает на то, что цепь управления тиристором разомкнута (например, при повреждении диода Д9).

При проверке устройства зажигания вне автомобиля следует обязательно соединить корпус катушки зажигания с корпусом электронного блока, так как в противном случае может произойти пробой катушки и повреждение деталей электронного блока.

При монтаже блока зажигания на автомобиле его устанавливают под капотом по возможности дальше от выпускного коллектора двигателя и закрепляют с помощью четырех винтов с резьбой М5 или Мб. Температура в месте установки блока не должна превышать + 70° С, иначе надежность работы устройства зажигания снижается из-за сильного перегрева полупроводниковых приборов.

Для подключения устройства зажигания к бортсети автомобиля лучше всего воспользоваться каким-либо подходящим штепсельным разъемом (например, типа РШАБПБ-14), как это показано на рис. 6. При этом обеспечивается быстрый переход от одного вида зажигания к другому. Для этого достаточно изменить положение вилки в гнезде разъема на 180°, как это показано на рис. 6 («ОЗ» - обычное зажигание, «ТЗ» - тиристорное зажигание). Кроме того, вилка может служить «ключом» противоугонного устройства - если вынуть ее из гнезда, то обе системы зажигания окажутся отключенными. Не зная схемы «ключа», запустить двигатель будет затруднительно, так как помимо указанных на рис. 6, возможно множество других вариантов расположения перемычек в вилке.

Рис. 6. Схема установки БТЗ-1 на автомобиле


В случае использования блока зажигания на автомобилях с 6-вольтовой аккумуляторной батареей необходимо помимо пересчета намоточных данных трансформатора преобразователя напряжения также скорректировать величину сопротивления резисторов R1-R2 и R3-R4 (делители напряжения в цепях баз транзисторов Т1-Т2).

В помощь радиолюбителю №46. 1974 год.
[email protected]

Тиристорная схема зажигания на лодочных моторах скорее напоминает любительскую схему, сделанную по принципу, работает, ну и ладно. Переделать её довольно сложно, но заставить работать без сбоев можно.

Главный недостаток тиристора - очень большой разброс параметров. Пару с примерно одинаковыми параметрами можно подобрать, имея коробку с 25 тиристорами. Измерить характеристики тиристоров в домашних условиях, а тем более в магазине весьма проблематично, хотя схема измерения очень простая, для этого нужен лабораторный автотрансформатор (ЛАТР), вольтметр, немного проводов и пару обыкновенных осветительных лампочек. Но можно примерно подобрать пару и любительским методом, замерив всего лишь сопротивление перехода катод-управляющий электрод в две стороны с помощью стрелочного тестера (авометра). Цифровой авометр для измерений не подойдет, в силу его конструктивных особенностей.

Другой недостаток тиристоров - изменение его параметров при нагреве и изменение параметров в процессе эксплуатации, вызванных нагревом.

Раньше в электронной системе зажигания применялись тиристоры КУ-202М. Естественно тиристоры никто не подбирал и через некоторое время возникали проблемы, вплоть до полного пропадания зажигания в одном цилиндре при нагреве мотора. Очень хорошей заменой тиристору КУ-202М служит тиристор 2У-202М. Технические характеристики полностью совпадают, но допустимая температура нагрева корпуса гораздо выше. Подбирать пару тоже желательно, так как разброс параметров большой. При замене тиристоров проблемы исчезают надолго, можно сказать навсегда.

В электронных системах последних годов выпуска применяются тиристоры КУ-221КМ. По форме и характеристикам они отличаются от КУ-202М (2У-202М). В новой системе зажигания проявился эффект, который ранее не был замечен. При нагреве на максимальных оборотах вдруг полностью отказывает зажигание, но через секунду восстанавливается. Если чуть уменьшить обороты эффект исчезает. Из за этого эффекта выходит из строя демпфер гребного винта, да и нагрузки, которые испытывает редуктор при таком "чихании" весьма значительные. В связи с тем, что на новых Ветерках практически все электронные блоки зажигания комплектуются тиристорами КУ-221КМ, остановимся на этой проблеме подробнее. Тиристоры обладают "памятью". При работе в схемах постоянного тока тиристоры открываются от положительного короткого импульса на управляющем электроде, а вот чтобы тиристор закрылся, надо сделать так, чтобы на аноде и катоде было одинаковое напряжение близкое к нулю. При работе на больших оборотах на аноде-катоде остается небольшой потенциал, так как конденсатор не полностью разряжается и тиристор просто остается в открытом состоянии. Нет никакой уверенности в том, что замена тиристоров на новые или покупка нового блока электронного зажигания принесет желаемый результат. Поэтому предлагаю воспользоваться простой схемой (проверена только на КУ-221КМ), легко реализуемой в домашних условиях и не требующей специальных знаний и подготовки. Для отбраковки нужен стрелочный тестер (авометр), пальчиковая батарейка и немного проводов.

Собираем схему

Обычно звездочкой в тестере помечается минус, но в данном случае это будет плюсовой вывод. Положение переключателя прибора - КОм х1. Касаемся плюсовым проводом от батарейки управляющего электрода тиристора. Если в трёх проводах не запутались, то стрелка прибора отклонится вправо. Медленно, чтобы не было дребезга, отводим провод от управляющего электрода. Если стрелка прибора упадет на ноль, то тиристор можно смело впаивать в схему, а если сигнал запомнился, то тиристор вполне нормальный, но конкретно в схеме Ветерка работать как положено не будет. Для верности повторите операцию несколько раз.

Я установил на плате вместо тиристоров КУ 221КМ тиристоры 2У 202М. Разместить их в корпусе проблематично, но можно. Надо только позаботиться об изоляции и проследить, чтобы они не касались металлической крышки корпуса.

Немного об эксплуатации системы зажигания в целом

Свечи зажигания желательно проверить на специальном аппарате под давлением. Отбраковка зависит от партии и может составить 50 процентов. Аппараты есть в автомастерских и в магазинах, где продают дорогие импортные автомобильные свечи. У каждой свечи есть уплотнительное кольцо, поэтому свечу заворачивать сильно не надо, в противном случае кольцо расплющится и на моторе вокруг свечи в дальнейшем появится маслянистое пятно. Выкручивать свечи, ради любопытства тоже не надо, лучше приобрести тестер свечей, стоимостью 70 рублей, позволяющий проверять свечи не выкручивая их из мотора. Свеча в отличном состоянии, если при нажатии на курок прибора произойдет 6-8 разрядов.

Катушки зажигания надежные, но они могут выйти из строя при проворачивании маховика даже от руки при снятых наконечниках со свечей. Снять наконечник и провернуть маховик можно случайно, при этом могут быть три варианта событий. Первый - вам повезло и ничего страшного не случилось, второй - вам тоже повезло в том плане, что катушка вышла из строя полностью, что легко определяется по отсутствию искры и третий вариант самый плохой. Катушка работает, но вместо, например, пяти искр формирует только четыре. Пятый разряд происходит внутри самой катушки. Если в катушке произошло небольшое межвитковое замыкание, то мощность искры значительно падает. Найти такую неисправность можно с помощью любой старой, но рабочей свечи с наполовину отогнутым боковым лепестком. Свеча отводится в сторону от свечного отверстия, а резьбовая часть свечи соединяется проводом с массой. Тестировать катушку, поднося высоковольтный провод к массе не рекомендую, так как рука может дрогнуть и искровой промежуток может оказаться сильно большим с последующим выходом исправной катушки из строя.

Тиристорная система зажигания в двигателе автомобиля завоевала столь большую популярность, что сегодня практически нет автолюбителей, не проявляющих к ней интереса.

Принципиальная схема проверенного варианта блока тиристорной системы зажигания изображена на рис. 1. Штрих-пунктирными линиями выделены составные части блока: источник высокого напряжения, накопитель энергии, формирователь пусковых импульсов, коммутатор зажигания Электронное - обычное.

Из которого следует, что чем больше емкость (С) накопителя энергии и выше напряжение (U), тем больше энергия в искре. Повышение напряжения ограничивается пределом электропрочности изоляции первичной обмотки катушки зажигания (400-450 В), а увеличение емкости-временем заряда накопительного конденсатора, которое должно быть меньше длительности межискрового промежутка. Исходя из этого в тиристорной системе зажигания выходное напряжение преобразователя обычно составляет 300-400 В, а емкость накопительного конденсатора равна 1-2 мкФ.

Трансформатор преобразователя напряжения является наиболее трудоемким элементом системы зажигания. В любительских условиях не всегда есть возможность применить трансформаторную сталь, рекомендуемую автором той или иной статьи. Чаще всего используют магнитопроводы с неизвестными характеристиками от разобранных старых трансформаторов, дросселей. Как показал опыт, трансформатор преобразователя напряжения можно выполнить без предварительных расчетов в зависимости от качества трансформаторной стали, но с несколько завышенной мощностью, что только улучшит работу преобразователя.

Данные трансформатора могут быть такими: сечение магнитопровода 3,5-4,5 см2; обмотки I и IV - по 9 витков провода ПЭВ-2 0,47-0,53; обмотки II и III - по

32 витка провода ПЭВ-2 1,0-1,1; обмотка V- 830-880 витков провода ПЭЛШО или ПЭВ-2 0,31-0,35.

Между рядами высоковольтной обмотки, а также между обмотками необходимо прокладывать лакоткань или конденсаторную бумагу.

Сборку пластин магнитопровода производят плотно и без зазоров (наличие стыковочных зазоров резко снижает качество трансформатора).

После сборки всего преобразователя с выпрямителем на диодах Д3-Д6 в виде одного узла следует произвести его проверку по следующим параметрам: сила потребляемого тока холостого хода, величина постоянного напряжения на выходе преобразователя, форма кривой напряжения на выходной обмотке V, частота тока преобразователя.

Проверку производят по схеме, приведенной на рис. 2. При правильном включении обмоток I, II, III и IV преобразователь, напряжения должен сразу же заработать (слышен слабый звук, создаваемый магнитопро-водом трансформатора). Потребляемая преобразователем напряжения сила тока, измеренная амперметром ИП1, должна быть в пределах 0,6-0,8 А (зависит от сечения и марки стали магнитопровода трансформатора).

Выключив питание, резистор R1 (см. рис. 2) удаляют, вход Y осциллографа переключают к точкам 3 и 4 (см. рис. 1) выпрямительного моста, а к точкам 1 я 2 подключают конденсатор емкостью 0,25-1,0 мкФ на номинальное напряжение 600 В и параллельно ему вольтметр постоянного тока со шкалой 0-600 В. Подав вновь питание на преобразователь, измеряют постоянное напряжение на выходе выпрямителя. На холостом ходу оно может достигать 480-550 В (зависит от числа витков обмотки V). Подбирая резистор R5 (начиная с большего номинала), добиваются снижения этого напряжения до 370-420 В. Одновременно на экране осциллографа наблюдают за формой кривой выходного напряжения преобразователя. На холостом ходу она должна соответствовать рис. 3, а (выбросы фронтов могут достигать 25-30% от амплитуды вторичного напряжения), а при подключенном резисторе R5 - кривой, показанной на рис. 3, б (выбросы фронтов снижаются до 10 - 15%). Далее с помощью осциллографа измеряют частоту работы преобразователя - она может быть в пределах 300-800 Гц (более высокая частота, которая может быть при недостаточно тщательной сборке магнитопровода трансформатора, нежелательна, так как ведет к повышенному нагреву трансформатора).

На этом проверку работы преобразователя напряжения заканчивают.

Диоды Д1 и Д2 ограничивают на уровне 0,6-0,8 В напряжения, закрывающие транзисторы, и тем самым предохраняют эмиттерные переходы от пробоя, а также способствуют уменьшению амплитуды выбросов фронтов вторичного напряжения.

В преобразователе напряжения хорошо работают транзисторы типа П210А, П209, П217 и другие аналогичные им с коэффициентом передачи тока не менее 12-15. Обязательным условием является подбор пары транзисторов с одинаковым коэффициентом передачи тока.

Накопитель энергии представляет собой конденсатор емкостью 1-2 мкФ, заряжающийся от выпрямителя преобразователя до напряжения 400-300 В и разряжающийся в момент искрообразования через открывающийся тиристор Д7 и первичную обмотку катушки зажигания. В рассматриваемой системе зажигания роль накопителя энергии выполняет конденсатор С2. Можно использовать любые бумажные конденсаторы (МБГП, МБГО и др.) с номинальным напряжением 500-600 В. Желательно отобрать конденсатор, емкость которого несколько больше номинальной, что положительно скажется на энергии в искре (особенно при напряжении выпрямителя меньше 380 В).

В тиристорной системе зажигания, собранной по схеме, изображенной на рис. 1, кроме основного накопителя энергии (конденсатор С2) предусмотрен пусдовой конденсатор СЗ, подключаемый параллельно конденсатору С2 с помощью контактов реле Р1 (напряжение срабатывания реле 6-8 В), которое срабатывает от напряжения, поступающего на зажим ВК во время пуска двигателя стартером. Это сделано с целью повышения энергии в искре за счет увеличения емкости накопителя при снижении напряжения аккумуляторной батареи до 7-

Напряжение включения тиристора, используемого в системе зажигания, должно быть не менее 500 В, а сила тока утечки при рабочем напряжении 400 В не должна превышать 1 мА. К сожалению, напряжение включения тиристоров даже одной партии может значительно отличаться, поэтому весьма желательно произвести проверку тиристора на напряжение включения и ток утечки.

Формирователь пусковых импульсов в тиристорной системе зажигания выполняет самую ответственную функцию: формирует импульсы определенной формы, длительности и амплитуды и подает их на управляющий электрод тиристора точно в момент размыкания контактов прерывателя. Можно считать, что качественные показатели блока тиристорного зажигания определяются тем, насколько совершенен формирователь пусковых импульсов. Он, кроме того, должен обладать высокой помехоустойчивостью ко всякого рода всплескам и перепадам напряжения бортовой сети автомобиля и быть неприхотливым к качеству работы прерывателя и, в первую очередь, дребезгу его контактов. Наилучшие показатели с этой точки зрения обеспечивает трансформаторный формирователь пусковых импульсов. Он состоит из импульсного трансформатора Тр2, диодов Д8 и Д9, конденсатора С4 и резисторов R7, R8. Когда контакты прерывателя замкнуты, ток, текущий через резисторы R7, R8 и первичную обмотку трансформатора, создает запас энергии в обмотках трансформатора, обеспечивающий появление импульса положительной полярности во вторичной обмотке в момент размыкания контактов прерывателя. Этот импульс поступает непосредственно на управляющий электрод тиристора Д7, открывает его и тем самым обеспечивает разряд конденсатора С2 через катушку зажигания.

Для исключения ложных пусковых импульсов, возникающих в момент дребезга контактов прерывателя, первичную обмотку трансформатора шунтируют параллельно соединенные диод Д9 и конденсатор С4. Емкость этого конденсатора, зависящую от данных импульсного трансформатора, подбирают опытным путем. Диод Д8 ограничивает на уровне 0,6-0,8 В отрицательный импульс на обмотке II трансформатора, возникающий при замыкании контактов прерывателя, предохраняя управляющий переход тиристора от пробоя.

Надежное открывание тиристора обеспечивается импульсом с амплитудой порядка 5-7 В и длительностью 100-200 мкс.

Для импульсного трансформатора можно использовать любой Ш-образный магнитопровод сечением 0,7- 1,5 см2. Сначала желательно испытать опытный вариант трансформатора: на каркас наматывают внавал 80- 120 витков провода ПЭВ-0,35-0,5 (обмотка I), а поверх них 35-40 витков такого же провода (обмотка II). После сборки магнитопровода, не стягивая его, к трансформатору (рис. 4) временно подключают все элементы формирователя пусковых импульсов (Д8, Д9, С4, R7 и R8), управляющий электрод и катод тиристора (анод тиристора остается свободным). В качестве прерывателя в цепь первичной обмотки трансформатора включают контакты P1/1 электромагнитного реле Р1 (типа РЭС-6 или РЭС-22), обмотку которого через гасящий резистор (Rгас) или понижающий трансформатор подключают к электросети. На контактную группу реле надевают резиновое кольцо для уменьшения дребезга контактов. Такое устройство обеспечивает работу формирователя пусковых импульсов с частотой 100 Гц, соответствующей частоте вращения коленчатого вала четырехцилиндрового двигателя, равной 3000 об/мин. Неминуемый дребезг контактов реле позволяет настроить формирователь пусковых импульсов на работу в более жестких условиях по сравнению с реальным прерывателем (именно по этой причине не следует использовать поляризованное реле, не дающее дребезга контактов). Включив питание, наблюдают на экране осциллографа кривую напряжения на входе тиристора, которая должна иметь вид, приведенный на рис. 5, а, выясняют исходные параметры пускового импульса.

Уменьшая или увеличивая число витков вторичной обмотки трансформатора, можно соответственно уменьшить или увеличить амплитуду импульса, а подбором числа витков первичной обмотки и емкости конденсатора С4 - изменять длительность импульса и его чистоту с точки зрения защиты от дребезга контактов прерывателя. Как правило, после двух-трех проб удается подобрать данные деталей так, чтобы импульс имел требуемые длительность и амплитуду, а дребезг контактов прерывателя не сказывался на устой чивости работы и форме кривой напряжения пусковых импульсов.

По данным, полученным в результате испы таний, изготавливают рабочий вариант импульсного трансформатора.

Коммутатор зажигания электронное - обычное, собранный на тумблерах или галетиом переключателе, обеспечивает быстрый переход с одного вида зажигания на другой (во избежание вывода из строя блока тири-сторного зажигания переключение производят только при отключенном источнике питания). Конденсатор С5, подключаемый в режиме обычного зажигания параллельно контактам прерывателя (Пр), замещает конденсатор, находящийся на корпусе распределителя зажигания (он обязательно должен быть снят или отключен, так как нарушает нормальную работу тиристорной системы зажигания). Выводы проводников, обозначенные ВК, ВКБ, Общ и Пр, подключают к соответствующим зажимам катушки зажигания и прерывателя, а контакты ВКБ и ВК, обведенные штрих пунктирными линиями, служат для подсоединения проводов, ранее соединявшихся с одноименными зажимами катушки зажигания.

Полностью собранный блок тиристорного зажигания следует подключить к прерывателю и катушке зажигания со свечой (включенной между высоковольтным выводом и минусом источника питания), а затем, подав на него напряжение, проверить по следующим параметрам: сила потребляемого тока, выходное напряжение выпрямителя, амплитуда и длительность пускового импульса, разрядный импульс накопительного конденсатора.

Сила потребляемого тока нагруженного преобразователя, измеренная амперметром, включенным в цепь


питания блока, должна составлять 1,3-1,5 А. Выходное напряжение выпрямителя (на конденсаторе С2), измеренное по схеме, приведенной на рис. 6, должно быть равно напряжению холостого хода или меньше его на 5-7% (иногда до 10%).

Амплитуда и длительность пускового импульса, измеренные осциллографом, должны равняться соответственно 5-7 В и 150-250 мкс. В промежутке между импульсами возникают (в момент замыкания контактов) небольшие помехи с малой амплитудой (не более 0,1-0,2 от амплитуды пускового импульса). Если же просматриваются небольшие зазубрины (обычно с частотой работы преобразователя), то следует подобрать емкость конденсатора С1.

Разрядный импульс накопительного конденсатора С2, просматриваемый на экране осциллографа, имеет вид, изображенный на рис. 5, б. Заряд конденсатора должен заканчиваться не позже 2/3 промежутка между импульсами (обычно он заканчивается на 1/3-1/2 промежутка).

Проверенный блок тиристорного зажигания следует оставить в рабочем состоянии на 30-40 мин для контроля за тепловым режимом. За это время трансформатор преобразователя должен нагреваться до температуры, не превышающей 70-80° С (терпит рука), а теплоотводы транзисторов - до 35-45° С.

Конструктивное оформление блока произвольное. Транзисторы преобразователя напряжения крепят на пластинчатых теплоотводах или профилированном дюралюминии толщиной 4-5 мм общей площадью 60-80 см 2 .

Возможная конструкция блока тиристорной. системы зажигания, смонтированного в металлическом корпусе размерами 130X130X60 мм, показана на рис. 7. Размещать блок на автомобиле (под капотом) следует так, чтобы его выходные провода ВК.Б, ВК и Общ можно было подключить к соответствующим зажимам катушки зажигания (провод, соединяющий зажим Общ катушки зажигания с прерывателем, удаляют). К контактам ВКБ и ВК колодки блока зажигания подключают провода, ранее стоявшие на одноименных зажимах катушки зажигания.

Поделиться