Датчики частоты оборотов. Где находится датчик оборотов двигателя

Когда у автолюбителей возникают те или иные проблемы с двигателем, они начинают интересоваться, какой датчик отвечает за обороты двигателя, поскольку первое подозрение зачастую падает на данные устройства.

Однако это не всегда так, ведь обороты могут «плавать» по различным причинам. Лучше всего для начала убедиться в том, что какие-либо другие поломки отсутствуют, а измерители проверять после. Так или иначе, если вы хотите обнаружить нужный датчик, вам необходимо знать, как он выглядит, и где его искать.

Основные понятия

Чтобы синхронизировать работу систем зажигания, а также впрыска, предусматривается датчик оборотов, или, как его называют, измеритель частоты вращения. Именно он передаёт в электроблок, управляющий мотором, необходимые данные о том, какие вращения поддерживает коленчатый вал в данный момент.

Этот измеритель силового агрегата – важнейший элемент автомобиля, без которого не обходится взаимодействие многих систем, ведь он помогает обеспечивать корректное функционирование всей машины в целом.

Электронный управляющий блок авто обрабатывает особые сигналы, которые посылает этот измеритель, чтобы выяснить:

  • количество впрыскиваемого топлива в данный момент;
  • момент впрыска;
  • время, требуемое для активации клапана адсорбера;
  • момент зажигания (у бензиновых моторов);
  • угол поворачивания распределительного вала во время работы системы по изменению фаз механизма газораспределения.

Чтобы определить работоспособность измерителя, необходимо узнать его местонахождение.

Место расположения

Датчик частоты вращения, или индукционный измеритель, обычно располагается над маркерным диском автомобиля.

Диск, в свою очередь, может находиться:

  • на маховике;
  • на коленвале внутри блока цилиндров – такое бывает у марок Ford, Opel и т.д.;
  • спереди моторного отсека на коленвале, вместе со шкивом привода допагрегатов (Jaguar, BMW, ВАЗ и т.д.).

Лучше всего, когда маркерные зубцы маховика предназначаются лишь для измерения оборотов мотора. Чуть хуже, если маркерными являются стартерные зубцы: эта особенность присутствует у автомашин марок Audi и Volvo.

Небольшая кривизна зубца маховика или маленький скол, присутствующий на нём, часто могут стать причиной в нарушении работы системы зажигания, из-за чего силовой агрегат не может функционировать на повышенных частотах вращения. В этом случае зачастую происходит хаотичное искрообразование, так как блок управления неправильно определяет количество зубцов.

Важные особенности

Следует обратить внимание, что на некоторых автомобилях датчик частоты вращения заменяет измеритель Холла: данное приспособление может передавать в главный блок управления не только сигнал о фазах механизма газораспределения, но и обороты двигателя. Если у вас именно такая ситуация, то найти прибор можно вблизи распределительного вала.

В случае, когда измеритель частоты вращения коленчатого вала выйдет из строя, вы не сможете завести свой автомобиль: после доскональной проверки системы зажигания и подачи топлива, в ходе которой не будет обнаружено существенных отклонений, рекомендуется обязательно проверить работоспособность датчика оборотов.

Заключение

«Плавающие» вращения двигателя не так редки: это состояние может возникнуть вследствие нескольких причин, поэтому необходимо тщательно проверить все варианты.

ДАТЧИКИ СИСТЕМЫ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ

Датчик температуры охлаждающей жидкости представляет собой термистор (резистор, сопротивление которого изменяется в зависимости от температуры). Датчик ввернут в отводящий штуцер термостата и соединен с входом контроллера. При низкой температуре сопротивление датчика высокое, а при высокой температуре - низкое (табл. 10.8).

ЭБУ рассчитывает температуру охлаждающей жидкости по падению напряжения на датчике. На холодном двигателе падение напряжения высокое, а на прогретом - низкое. Температура охлаждающей жидкости влияет на большинство характеристик, которыми управляет ЭБУ.

Для замены датчика вам потребуется ключ «на 19».

2. Частично слейте охлаждающую жидкость из радиатора.

3. Сожмите фиксатор колодки жгута проводов...

4. ...и отсоедините колодку от датчика температуры охлаждающей жидкости.

5. Ослабьте ключом затяжку датчика...

6. ...и выверните его из штуцера термостата.

7. Остудите датчик до температуры окружающего воздуха. Подсоедините тестер в режиме омметра к выводам датчика и измерьте его сопротивление. Измерьте термометром текущую температуру воздуха и сравните полученные значения с табл. 10.8. При отклонении сопротивления от нормы замените датчик.

8. Для измерения сопротивления на выводах датчика при различных температурных режимах опустите датчик в горячую воду и проверьте изменение его сопротивления по мере остывания воды, контролируя температуру воды термометром. Номинальные значения сопротивления при различной температуре указаны в табл. 10.8.

9. Установите датчик в порядке, обратном снятию.

10. Залейте охлаждающую жидкость.

Датчик детонации , прикрепленный к верхней части блока цилиндров, улавливает аномальные вибрации (детонационные удары) в двигателе.

Чувствительным элементом датчика является пьезокристаллическая пластинка. При возникновении детонации на выходе датчика генерируются импульсы напряжения, которые увеличиваются с возрастанием интенсивности детонационных ударов. ЭБУ по сигналу датчика регулирует опережение зажигания для устранения детонационных вспышек топлива.

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Нажмите на пружинный фиксатор и отсоедините колодку жгута проводов от колодки жгута датчика детонации.

3. Выверните болт крепления датчика детонации к блоку цилиндров двигателя...

4. ...и снимите датчик (впускной трубопровод для наглядности снят).

ПРИМЕЧАНИЕ

Обратите внимание на маркировку датчика, чтобы при замене на новый приобрести аналогичный датчик детонации.

5. Установите датчик в обратном порядке, ввернув болт его крепления моментом 19,5-20,5 Н·м.

Комбинированный датчик температуры и абсолютного давления воздуха во впускном трубопроводе. Датчик абсолютного давления выполнен в виде четырех резисторов переменного сопротивления, соединенных мостом и наклеенных на диафрагму, которая сжимается или растягивается в зависимости от абсолютного давления впускного воздуха внутри впускного трубопровода. Он фиксирует изменение давления во впускном трубопроводе в зависимости от изменения нагрузки и частоты вращения коленчатого вала двигателя и преобразует его в напряжение выходного сигнала. ЭБУ подает на датчик напряжение питания 5 В и обрабатывает его сигналы, передаваемые по цепи передачи сигнала. В зависимости от сигнала датчика ЭБУ изменяет продолжительность подачи топлива и угол опережения зажигания.

Датчик температуры впускного воздуха представляет собой термистор с отрицательным температурным коэффициентом: электрическое сопротивление датчика уменьшается с повышением температуры. По информации о температуре воздуха от датчика контроллер регулирует количество впрыскиваемого топлива.

Для замены датчика вам потребуется отвертка с крестообразным лезвием.

1. Отожмите пластмассовый фиксатор колодки жгута проводов...

2. ...и отсоедините колодку от датчика.

3. Выверните два винта крепления датчика температуры и абсолютного давления впускного воздуха к впускному трубопроводу...

4. ...и снимите датчик.

ПРИМЕЧАНИЕ

Обратите внимание на маркировку датчика, чтобы при замене неисправного датчика приобрести аналогичный датчик температуры и абсолютного давления впускного воздуха.

5. Установите датчик температуры и абсолютного давления впускного воздуха в порядке, обратном снятию.

Датчик скорости автомобиля установлен на коробке передач. Принцип действия датчика основан на эффекте Холла. Датчик выдает на ЭБУ прямоугольные импульсы напряжения с частотой, пропорциональной скорости вращения ведущих колес.

Для замены датчика вам потребуется ключ «на 10».

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Сожмите пружинный фиксатор колодки жгута проводов и отсоедините колодку от датчика скорости.

3. Выверните болт крепления и снимите датчик скорости.

4. Установите датчик скорости в порядке, обратном снятию.

Датчик положения дроссельной заслонки (ДПДЗ) установлен сбоку на дроссельном узле и связан с осью дроссельной заслонки.

Он представляет собой потенциометр, на один конец которого подается «плюс» напряжения питания (5 В), а другой его конец соединен с «массой». С третьего вывода потенциометра (от ползунка) идет выходной сигнал к ЭБУ. Когда дроссельная заслонка поворачивается (от воздействия на педаль управления), напряжение на выходе датчика изменяется.

При закрытой дроссельной заслонке оно ниже 0,95 В. Когда заслонка открывается, напряжение на выходе датчика растет и при полностью открытой заслонке должно быть более 4 В. Отслеживая выходное напряжение датчика,

ЭБУ корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т.е. по желанию водителя). ДПДЗ не требует регулировки, так как электронный блок воспринимает холостой ход (т.е. полное закрытие дроссельной заслонки) как нулевую отметку.

При отказе датчика дроссельной заслонки ЭБУ заносит в память код неисправности датчика, включает контрольную лампу системы управления двигателем и рассчитывает предполагаемое значение угла открытия дроссельной заслонки по частоте вращения коленчатого вала и по сигналам комбинированного датчика температуры и абсолютного давления воздуха во впускном трубопроводе.

Для замены ДПДЗ вам потребуется отвертка с крестообразным лезвием.

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Нажмите на фиксатор колодки жгута проводов...

3. ...и отсоедините колодку от датчика.

4. Выверните два винта крепления...

5. ...и снимите датчик положения дроссельной заслонки с дроссельного узла.

6. Установите датчик в порядке, обратном снятию.

Регулятор холостого хода (РХХ) регулирует частоту вращения коленчатого вала в режиме холостого хода, управляя количеством подаваемого воздуха в обход закрытой дроссельной заслонки. Он состоит из двухполюсного шагового электродвигателя и соединенного с ним конусного клапана. Клапан выдвигается или убирается по сигналам ЭБУ. Полностью выдвинутая игла регулятора (что соответствует 0 шагов) перекрывает поток воздуха. Когда игла вдвигается, обеспечивается расход воздуха, пропорциональный количеству шагов отхода иглы от седла.

Замена РХХ описана в разд. 5 «Двигатель» (см. «Проверка и замена регулятора холостого хода» ).

Датчик положения коленчатого вала индуктивного типа предназначен для синхронизации работы электронного блока управления с ВМТ поршней 1-го и 4-го цилиндров и угловым положением коленчатого вала.

Датчик установлен на картере сцепления напротив задающего зубчатого венца маховика. На маховике вырезаны зубья с равноудаленными впадинами. Два зуба срезаны для создания импульса синхронизации («опорного» импульса), который необходим для согласования работы блока управления с ВМТ поршней в 1-м и 4-м цилиндрах.

При вращении коленчатого вала зубья изменяют магнитное поле датчика, наводя импульсы напряжения переменного тока. Блок управления по сигналам датчика определяет частоту вращения коленчатого вала и выдает импульсы на форсунки.

При отказе датчика пуск двигателя невозможен.

Для замены датчика вам потребуется ключ «на 10».

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Нажмите на пружинный фиксатор...

3. ...и отсоедините колодку жгута проводов системы управления двигателем от колодки жгута проводов датчика.

4. Выверните болт крепления датчика...

5. ...выньте колодку жгута проводов датчика из кронштейна...

6. ...и извлеките датчик положения коленчатого вала из отверстия в картере сцепления.

7. Установите датчик в порядке, обратном снятию.

Датчик концентрации кислорода установлен в приемной трубе системы выпуска отработавших газов. Содержащийся в отработавших газах кислород реагирует с датчиком концентрации кислорода, создавая разность потенциалов на выходе датчика. Она изменяется приблизительно от 0,1 В (высокое содержание кислорода - бедная смесь) до 0,9 В (мало кислорода - богатая смесь).

Для нормальной работы температура датчика должна составлять не ниже 300°С. Поэтому для быстрого прогрева после пуска двигателя в датчик встроен нагревательный элемент.

Отслеживая выходное напряжение датчика концентрации кислорода, контроллер определяет, какую команду по корректировке состава рабочей смеси подавать на форсунки.

Если смесь бедная (низкая разность потенциалов на выходе датчика), то контроллер дает команду на обогащение смеси; если смесь богатая (высокая разность потенциалов) - на обеднение смеси.

Для замены управляющего датчика концентрации кислорода вам потребуются: ключ «на 22», отвертка с плоским лезвием.

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Выдвиньте красный фиксатор...

3....и разъедините колодки жгутов проводов системы управления двигателем и датчика концентрации кислорода.

4. Выверните датчик из приемной трубы и снимите его с автомобиля.

ПРИМЕЧАНИЕ

Обратите внимание на маркировку датчика, чтобы при замене на новый приобрести аналогичный датчик концентрации кислорода.

5. Установите датчик в порядке, обратном снятию, смазав предварительно резьбовую часть датчика графитной смазкой.

Датчик фаз установлен в задней части головки блока цилиндров. Принцип его действия основан на эффекте Холла. Датчик определяет ВМТ такта сжатия поршня 1-го цилиндра. Сигнал датчика используется контроллером для организации фазированного впрыска топлива в соответствии с порядком работы цилиндров.

При возникновении неисправности цепи контроллер заносит в свою память ее код и включает контрольную лампу.

Для замены датчика фаз вам потребуется ключ «на 8».

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Нажмите на пружинный фиксатор колодки жгута проводов...

3. ...и отсоедините колодку от разъема датчика.

4. Выверните два болта крепления крышки датчика к его корпусу...

5. ...и снимите крышку с установленными в ней чувствительным элементом и разъемом.

ПРИМЕЧАНИЕ

Чувствительный элемент датчика фазы приклепан к крышке заклепками, поэтому рекомендуем заменять его в сборе с крышкой.

6. Установите датчик фаз в порядке, обратном снятию.

Датчики частоты вращения колеса
Применение
Датчики частоты вращения колеса служат для определения скорости вращения колес автомобиля (числа оборотов колеса). Сигналы частоты вращения передаются по кабелю в блок управления ABS, ASR или ESP автомобиля, который индивидуально управляет силой торможения каждого колеса. Этот контур регулирования предотвращает блокирование (при наличии ABS) или прокручивание колес (при наличии ASR или ESP) и гарантирует устойчивость и управляемость автомобиля. Системы навигации также нуждаются в сигналах частоты вращения колеса, чтобы рассчитывать пройденный путь (например, в туннелях или при отсутствии сигналов спутника).

Конструкция и принцип действия
Сигналы для датчика частоты вращения колеса формируются с помощью стального импульсного датчика, жестко соединенного со ступицей колеса (для пассивных датчиков), или мультиполюсного магнитно-импульсного датчика (для активных датчиков). Этот импульсный датчик имеет такую же скорость вращения, что и колесо, и проходит бесконтактно чувствительную зону головки датчика. Датчик «считывает» без прямого контакта через воздушный зазор величиной до 2 мм (рис. 2).
Воздушный зазор (с небольшими допусками) служит для того, чтобы обеспечить процесс получения сигнала без помех. Возможные помехи, такие как колебания, вибрации, температура, влажность, условия установки на колесе и пр. исключаются.

С 1998 г. вместо пассивных (индуктивных) датчиков частоты вращения в новейших разработках используются практически исключительно активные датчики частоты вращения колеса. Пассивные (индуктивные) датчики частоты вращения состоят из постоянного магнита (рис. 2, поз. 1) и соединенного с ним магнитомягкого полюсного контактного штифта (3), который вставлен в катушку (2). Таким образом, создается постоянное магнитное поле.
Полюсный контактный штифт находится прямо над импульсным колесом (4), зубчатым колесом, жестко соединенным со ступицей. Во время вращения импульсного колеса существующее постоянное магнитное поле «нарушается» из-за постоянной смены зубца и впадины. За счет этого изменяется магнитный поток, проходящий через полюсный контактный штифт, а вместе с ним и магнитный поток, проходящий через витки катушки. Смена магнитных полей индуцирует в обмотке переменное напряжение, которое снимается на концах обмотки.
Как частота, так и амплитуда переменного напряжения пропорциональны числу оборотов колеса (скорости вращения) (рис. 3). Когда колесо не движется, индуцируемое напряжение также равно нулю.
Форма зубцов, воздушный зазор, крутизна скачка напряжения и входная чувствительность прибора управления определяют минимальную измеряемую скорость автомобиля, а также минимально возможную для использования ABS чувствительность срабатывания и скорость переключения.

Поскольку условия монтажа на колесе не везде одинаковые, существуют различные формы полюсных контактных штифтов и различные варианты монтажа. Наиболее распространены резцовый полюсный контактный штифт (рис. 1а, также называемый плоским индуктором) и ромбовидный контактный штифт (рис. lb, также называемый крестовидным индуктором). Оба полюсных контактных штифта при монтаже должны быть точно направлены к импульсному кольцу.

Активный датчик скорости вращения
Сенсорные элементы
В современных тормозных системах используются практически исключительно активные датчики скорости вращения (рис. 4). Обычно они состоят из герметично залитой пластиком кремниевой интегральной микросхемы, распложенной в головке датчика.
Наряду с магниторезистивными интегральными микросхемами (изменение электрического сопротивления при изменении магнитного поля) фирма «Bosch» все еще использует в больших объемах сенсорные элементы Холла, которые реагируют на малейшие изменения магнитного поля и поэтому могут использоваться при воздушных зазорах большего размера по сравнению с пассивными датчиками скорости вращения.
Активное (импульсное) кольцо
В качестве импульсного кольца активного датчика скорости вращения используется мультиполюснное колесо. Речь идет о поочередно расположенных постоянных магнитах, расположенных в форме кольца на немагнитном металлическом носителе (рис. 6 и рис. 7а). Северный и южный полюса этих магнитов выполняют функцию зубцов импульсного кольца. На интегральную микросхему датчика воздействует постоянно изменяющееся магнитное поле. Поэтому магнитный поток, проходящий через интегральную микросхему, также изменяется при вращении мультиполюсного кольца.

Рисунок № 4 Активный датчик скорости вращения

В качестве альтернативы мультиполюсному кольцу можно использовать стальное зубчатое колесо. В этом случае на интегральную микросхему Холла устанавливается магнит, вырабатывающий постоянное магнитное поле (рис. 7b). Во время вращения импульсного кольца существующее постоянное магнитное поле подвергается воздействию «помех» из-за постоянной смены зубца-выемки. В остальном принцип измерения, обработки сигнала и интегральная микросхема идентичны таковым в датчике без магнита.

Характеристики
Типичное явление для активного датчика скорости вращения - интеграция измерительного элемента Холла, усилителя сигнала и подготовки сигнала в интегральной микросхеме (рис. 8). Данные о скорости вращения передаются в виде подводимого тока в форме прямоугольных импульсов (рис. 9). Частота импульсов тока пропорциональна числу оборотов колеса, а считывание показаний возможно почти до остановки колеса (0,1 км/ч).

Питающее напряжение находится в диапазоне между 4,5 и 20 Вольт. Уровень прямоугольного выходного сигнала составляет 7 мА (низкий) и 14 мА (высокий). При такой форме передачи цифровых сигналов, например, индуктивное напряжение помех является неэффективным по сравнению с пассивным индуктивным датчиком. Связь с блоком управления осуществляется двухпроводным кабелем.

Компактная конструкция и небольшой вес позволяют монтировать активный датчик скорости вращения на подшипнике колеса или в нем (рис. 10). Для этого подходят различные стандартные формы головки датчика.

Цифровая обработка сигнала позволяет передавать кодированную дополнительную информацию с помощью широтноимпульсно-модулируемого выходного сигнала (рис. 11).
Определение направления вращения колес: это особенно необходимо для функции «Hill Hold Control», предотвращающей откат автомобиля назад во время подъема на гору. Определение направления вращения также используется для навигации автомобиля.
Определение состояния остановки: эти данные также обрабатываются в функции «Hill Hold Control». Дальнейшая обработка данных входит в раздел самодиагностики.
Качество сигнала датчика: можно передавать данные о качестве сигнала датчика. Посредством этого водитель в случае ошибки может получить информацию о необходимости своевременно обратиться в сервисную службу.

5 Rating 5.00 (2 Votes)

В рабочей практике происходит множество процессов, которые требуют подсчета частоты вращения или следования объектов. Например, это обязательный контроль частоты вала ленточного транспортера, привода крыльчатки бетономешалки, частоты следования ковшей нории, частоты вращения шестерни коробки передач.

От выполнения этих задач зависит производительность оборудования, поэтому Вы стараетесь выбирать надежные и долговечные инструменты для их решения:

  • проверенные опытным путем
  • с гарантией качества
  • по выгодным, стабильным ценам
  • и с возможностью срочной/бесплатной доставки.

В «ТЕКО» Вы получите полный спектр выгод и широкий выбор инструментов для подсчета частоты.

Индуктивные датчики для контроля частоты вращения приводного барабана конвейера

В случае провисания или обрыва конвейерной ленты, нарушается технологический процесс. Этого можно избежать, используя индуктивный датчик контроля минимальной скорости . После установки датчика на приводной барабан конвейера, Ваша система автоматически отслеживает частоту его оборотов, тем самым держит под контролем состояние ленты транспортера. В случае неисправности (снижении частоты ниже установленного минимума) на устройство управления будет подан сигнал о неполадках в работе системы.

С помощью подстроечного резистора на датчике устанавливается минимальное пороговое значение частоты вращения приводного барабана (скорости движения ленты). Для того, чтобы датчик не выдал ложный сигнал по причине инерции конвейера, в нем предусмотрена величина задержки срабатывания при первоначальном запуске двигателя для разгона. В типовых датчиках она достигает 9 секунд, при необходимости - регулируется. Диапазон регулируемых частот: 0,1...2,5 Гц; 2...50 Гц

Вариант успешного применения датчика контроля минимальной скорости: контроль исправности грохота. Датчик запрограммирован на определенную частоту прохождения грохота мимо чувствительного элемента. И в случае, если частота меняется, датчик сигнализирует о сбое в работе грохота (из-за обрыва троса, выхода из строя двигателя или другой возможной причины).

Гарантия - 24 месяца

Контроль частоты в специфических условиях, для индивидуальных обстоятельств

При необходимости, любые типы датчиков «ТЕКО» могут выступать в качестве датчиков минимальной скорости: индуктивные, емкостные, оптические и магниточувствительные. Для этого их достаточно подключить к блоку контроля частоты CF1 , который контролирует частоту импульсов входного сигнала и формирует сигнал на выходе при достижении частотой установленного порогового значения.

Применение блока позволяет контролировать частоту следования объектов во взрывоопасных средах : в соединении со взрывобезопасными датчиками и блоком сопряжения.

Для контроля объектов в «узких» местах конструкции, где крупногабаритный датчик разместить невозможно, возможно применение миниатюрных датчиков с блоком контроля частоты.

Гарантия - 12 месяцев

Для определения частоты вращения вала в коробках передач и подачи сигнала на тахометр и тахограф мы рекомендуем датчики частоты ВТИЮ.7019 и ВТИЮ.7030.

Контроль частоты вращения механизмов широко востребован для определения скорости движения автотранспорта, мониторинга работы автокрана и для отлаженной работы оборудования, в составе которого присутствуют вращающиеся приводные устройства (от сепаратора до грохота).

Измерение частоты вращения с помощью датчиков «ТЕКО» осуществляется бесконтактно и не влияет на срок службы оборудования.

Датчики частоты ВТИЮ.7019 и ВТИЮ.7030. успешно применяются на автомобилях производства КАМАЗ, МАЗ и других известных производителей.

Гарантия - 24 месяца

Исправность трансмиссии всегда под контролем индуктивных датчиков

Регулярная оценка рабочего состояния трансмиссии позволяет Вам избежать аварий, простоев и непредвиденных ремонтных работ. Специально для наблюдения за частотой вращения элементов трансмиссии предназначен датчик ВТИЮ. 7040. Частота вращения контролируемых элементов может составлять от 0 до 6000 Гц. При необходимости мы разрабатываем датчики под индивидуальные габариты.

Датчик готовится к выпуску.

Контролируйте частоту с помощью фотоэлектрических преобразователей

Определяйте частоту вращающегося объекта с помощью фотоэлектрического преобразователя «ТЕКО» OT NK21A-311P-11-L-F .

Принцип его работы в том, чтобы контролируемый объект или его деталь прерывала световой поток, излучаемый датчиком. Прерывание преобразуется в импульс на выходе датчика, который вы можете использовать для контроля частоты вращающегося диска или любой другой детали, совершающей обороты. Одному пересечению луча соответствует один выходной импульс, формируемый по окончанию прохождения затеняющего предмета.

Гарантия - 24 месяца

Мониторинг аварийных ситуаций с помощью тахометра

Для подсчёта и индикации количества действий в единицу времени, а также для выдачи управляющего сигнала при достижении заданной установки частоты предлагаем использовать .

Помимо постоянного мониторинга аварийных ситуаций (в системах контроля частоты вращения механизмов) Вы получаете:

  • Универсальность/взаимозаменяемость входных портов;
  • Функция «Слежение», управляющая выходным реле;
  • Непрерывная и динамичная индикация;
  • Программируемый коэффициент деления частоты входного сигнала;
  • Детектирование направления вращения при использовании двух сигналов;
  • Встроенный источник питания.

Гарантия на прибор - 24 месяца

Контроль частоты вращения зубчатого колеса обычным индуктивным датчиком

Задачу контроля частоты вращения зубчатого колеса можно решить с помощью обычного индуктивного датчика. Для этого нужно знать максимальную рабочую частоту оперирования датчика, частоту вращения зубчатого колеса и число его зубьев.
Для правильного определения рабочей частоты датчика необходимо определить частоту воздействия на него зубчатого колеса.

Решение возможно с помощью простой формулы:
m x n / 60= ƒ (Гц)
где m - число зубьев, а n - частота вращения об/мин.


Для синхронизации работы систем зажигания и впрыска предусмотрен датчик оборотов двигателя или, как он еще называется, датчик частоты вращения коленвала. Он передает в электронный блок управления мотором данные о том, на каких оборотах функционирует коленчатый вал в текущий момент времени.

Назначение

Датчик оборотов силового агрегата является очень важным элементом, без которого трудно представить взаимодействие всех систем, обеспечивающих исправное функционирование автомобиля.

ЭБУ использует сигналы, поступающие от этого датчика, для того, чтобы установить:

  • количество впрыскиваемого топлива;
  • момент впрыска топлива;
  • момент зажигания (характерно для двигателей бензинового типа);
  • время активации клапана адсорбера;
  • угол поворота распредвала в процессе работы так называемой системы изменения фаз газораспределительного механизма.

Расположение

Требуется знать, где находится датчик оборотов двигателя или, что одно и то же, индукционный датчик, чтобы проверить его работоспособность. Он находится над маркерным диском, который в свою очередь может располагаться:

  • на маховике;
  • внутри блока цилиндров на коленчатом валу (Форд, Опель и другие);
  • на коленчатом валу в передней части моторного отсека, совместно со шкивом привода дополнительных агрегатов (Ягуар, БМВ, ВАЗ и другие).

Лучше, если маркерные зубья маховика предназначены только для использования датчиком оборотов мотора. Несколько хуже, когда в качестве маркерных выступают стартерные зубья. Такая конструктивная особенность характерна для автомобилей марки Вольво и Ауди.

Искривление зуба маховика или даже малейший скол на нем зачастую становится причиной сбоев в системе зажигания, в связи с чем силовой агрегат отказывается работать на повышенных оборотах. Происходит хаотичное искрообразование, потому что блок управления двигателем ошибочно определяет количество зубьев.

В устройстве многих автомобилей в качестве датчика оборотов выступает датчик Холла. Этот элемент одновременно передает в ЭБУ сигналы о фазах газораспределительного механизма и обороты двигателя. В этом случае найти его можно в непосредственной близости от распределительного вала.

Если датчик частоты вращения коленвала вышел из строя, то ваш автомобиль не сможет завестись. Проверив подачу бензина и систему зажигания и не обнаружив никаких отклонений, не забудьте проверить датчик оборотов двигателя.

Видео

Подробнее об устройстве, конструкции и принципе работы датчика коленвала:

Поделиться